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ABSTRACT
Dysathria is a neuromotor disorder that causes the individual to speak
with imprecise articulation. This paper presents an automatic analysis
framework for dysarthric speech, using a linguistically motivated rep-
resentation based on distinctive features. Our framework includes a
seq2seq phonetic decoder for Cantonese dysarthric speech. The manually
or automatically transcribed phones can be mapped into a represen-
tation that consists of 21 distinctive features (DF). The DFs between
the transcribed phones and canonical phones are compared in order
to identify articulatory error rate (AER) for each DF. This forms an
AER profile for a given set of dysarthric recordings from a speaker.
Experiments show that the difference between the AER profile derived
from manual versus automatic phonetic transcription is relatively small –
with a root mean squared error (RMSE) of 0.053 for the word-reading
task and 0.085 for the sentence-reading task in CU DYS. In addition, the
correlations between the AER profiles are high, at 0.97 and 0.95 for the
two tasks respectively. These results reflect the viability of the proposed
framework as an automated means of processing dysarthric speech to
achieve articulatory analyses described by DFs. The AER profile is
intuitive and interpretable, for pinpointing problem areas in articulation.
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1 Introduction

Dysarthria denotes a set of speech disorders related with neurological con-
ditions and diseases such as cerebral palsy, traumatic brain injury, stroke,
Parkinson’s disease, or amyotrophic lateral sclerosis, which cause disturbances
in muscular control over the speech production [12]. Therefore, dysarthria
may result in unnatural and unintelligible speech with unstable prosody and
imprecise articulation, which engender substantial communication difficulties
for dysarthric patients. It was found in phonetic analyses that dysarthric
subjects with cerebral palsy had the lowest syllable-initial consonant accuracy,
followed by final consonants and then vowels [43]. It was also found that for hy-
pokinetic (a type of dysarthria) dysarthric recordings, there are characteristics
of rough voice, reduced pitch, mono-loudness and imprecise consonants [44].
Imprecision is also found in tone production and format frequency transitions
[3, 22, 27].

The underlying reason for these imprecise pronunciations is reduced mus-
cular control of the articulatory movements. For example, articulatory move-
ments of dysarthric subjects with Parkinson’s disease were recorded with
3-dimensional Electromagnetic Articulatography (EMA) [47], which shows
reduced velocity and distance traveled in specific articulatory movements.
Although EMA can help identify articulatory undershoot as a cause of articula-
tory imprecision, the methodology does not offer easy accessibility to analyzing
the articulatory problems for dysarthric subjects. This motivates the current
investigation into articulatory analyses of dysarthric speech recordings, to gain
insights into the mechanisms leading to disordered speech production. Since
manual analyses of data is costly, we also aim to develop methodologies to
support automatic analyses of dysarthric speech data. We choose to represent
speech in terms of distinctive features (DF), which present a linguistically
motivated representation that focus on the manner and place of articulation,
whereby a set of compact features that essentially takes on quantized values
(e.g. positive and negative) is applicable to all the languages spoken by hu-
mans. We believe that the DF representation has much to offer in terms of
elucidating insights on the articulatory mechanisms that lead to how dysarthric
speech deviates from normal speech. A key challenge in this investigation is
the difficulty in recruiting suitable subjects for recording, and even if we do
manage to recruit, recording can be difficult because the subjects’ conditions
may cause them to be easily fatigued.

The rest of this paper is organized as follows: Section 2 presents the
background of this study, including a literature review of previous efforts in
automated processing of dysarthric speech. Since our investigation is based on
speech data in Cantonese Chinese, which is the predominant language in Hong
Kong and surrounding regions – we will present some background knowledge
about this prominent Chinese dialect. We will also elaborate on background
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knowledge about distinctive features (DF). Section 3 describes a Cantonese
dysarthric speech corpus, CU DYS, that we have designed and collected to
support the current study. Section 4 presents the proposed notion of articula-
tory error rate (AER) that can be derived from manual phonetic transcriptions
of deviant articulations in dysarthric speech. Since manual transcription is a
laborious and costly process, Section 5 presents our work in the development
of a seq2seq model for automatic phonetic transcription. Section 6 presents
results on the performance of automatic phonetic transcription, and how the
phones may be mapped into a DF representation for assessment of DF error
rates. Furthermore, if we compare the DF representation derived from the
automatically transcribed phones, with the DF representation derived from
the canonical phones (mapped from the textual prompts), we can obtain the
articulatory error rate (AER) for each DF, across all DFs, which can directly
reflect the articulatory deviations of dysarthric speech. Section 7 discusses how
the AER profile of a speaker can potentially inform the design of intervention
plans, and can be used to predict the severity levels of dysarthric speech from
manual assessments. Finally, Section 8 presents the conclusions and future
directions.

2 Background

2.1 Automated Processing of Dysarthric Speech

Previous work can be classified into three main areas: automatic speech
recognition (ASR) of dysarthric recordings, automatic intelligibility ratings
and automatic error analyses. Research in disordered speech face the challenge
of recruiting the appropriate speakers to provide their speech recordings.
Furthermore, due to their conditions, the subjects may become fatigued more
easily and the recording session must be kept short. Consequently, sparse
data is the dominant problem. Various techniques have been studied, such
as speaker/data selection [9], speaker-specific or severity-specific modeling
and adaptive models [2, 17, 18, 39, 50], use of meta-learning with model
re-initialization [42], deep metric learning [38] and fusion of acoustic and
articulatory features [51].

Another area is automatic intelligibility rating. Speech intelligibility has a
high correlation with phoneme recognition accuracy [41] and character recog-
nition result [40]. Automatic intelligibility can be estimated directly, with
i-vector or x-vector, in English [29], in French [20, 33], and in Korean [19].
The Fisher vector is an alternative of i-vector for automatic intelligibility esti-
mation [5]. Both the i-vector and Fisher vectors are difficult to be interpreted.
Phonetic posteriorgrams (PPGs) is an alternative representation that can be
used in intelligibility estimation. PPGs refer to the posterior probabilities of
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each phonetic class for a specific time in an utterance. PPGs derived from
neural networks are shown to be useful in predicting the intelligibility of a
voice disorder [25]. Other features, such as loudness, harmonicity, MFCCs, and
jitters, have also been used to estimate intelligibility [32]. These interpretable
variables may help speech therapists identify the problems of dysarthric
speech.

The third area is automatic error analyses. This is useful in different appli-
cations. For example, phonetic error analyses can improve the performance of
ASR [48]. Recurrent neural networks are applied to help recognize phonological
features in dysarthric speech for visualization [16]. Articulatory features in
dysarthric speech be recognized by an end-to-end automatic speech attribute
transcription using a transformer model [24].

This study aims to develop an automatic approach that can analyze the
deviant patterns of dysarthric speech with efficiency and interpretability. More
specifically, we propose a phonologically-motivated framework for computa-
tional articulatory characterization of error patterns in dysarthric speech.
We leverage the parsimonious description of speech segments afforded by
distinctive features (DFs) [37], which have correlates in both articulatory
and acoustic domains. We develop automatic speech recognition techniques
to derive DFs from the speech signal, which also enables efficient analy-
sis of a large amount of speech data. Corpus-based analysis and compari-
son between the DF-based representations of healthy and dysarthric speech
will elucidate problematic articulatory gestures that cause errors and reduce
intelligibility.

2.2 Cantonese Chinese

Cantonese Chinese is the predominant dialect used in Hong Kong, Macao
and many overseas Chinese communities, spoken by over 60 million people
worldwide. Cantonese is a tonal language with 6 tones, and dysarthric speech
may exhibit deviant tonal patterns. As a first step, we focus on Cantonese
syllable articulation. We adopt the Jyutping Cantonese syllable labeling
(romanization) scheme, designed by the Linguistic Society of Hong Kong [26].
Each Chinese character is pronounced as a single base syllable with a lexical
tone, e.g. “看” <translation: see> is pronounced as /hon3/. The base syllable
(i.e. /hon/) is divided into two parts: an initial and a final. The initial is an
optional consonant, which is also referred to as the syllable onset. The final
consists of the syllable’s vowel nucleus, which may be a monophthong or a
diphthong; followed by an optional consonant referred to as the syllable coda.
The lexical tones range from 1 to 6. In this work, we focus on the base syllable
as the unit for analysis.
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2.3 Distinctive Features

A distinctive feature (DF) is the most basic phonological unit which can
differentiate between a pair of maximally close phonemes [8]. For example, the
two labial phonemes [p] and [b] can be distinguished by the DF (voice), with
[p] being [−voice] and [b] being [+voice]. Each phoneme can be represented
in terms of a vector of DFs. There are two types of DFs – the first type
are place features which specify the place of articulation, e.g. [labial] is
articulated with the lips, [alveolar] is articulated with the tongue touching
near the ridge of the bone behind the teeth in the upper jaw; and [velar]
is articulated with the back of the tongue touching near the soft palate, etc.
The second type are manner features which describe the type and degree of
airflow through the vocal tract. For example, [+continuant] refers to airflow
being continuous but involves partial occlusion of the airway, such as vowels,
glides, liquids and fricatives. [−continuant] is where there is obstruction in
of airflow, e.g. for nasals, strops and affricates. [+lateral] refers to airflow
around the sides instead of over the top of the tongue, such as for the phoneme
[l]. [+nasal] refers to the air flowing through the nasal cavity instead of the
oral cavity. The complete list of 21 DFs adopted in this work is shown in
Table 1.

As we attempt to map phonemes into DFs, we define four possible values
for the DFs: (i) positive (‘+’), referring to the fact that the DF is present,
such as the example of [+continuant] mentioned above; (ii) negative (‘-’),
referring to the fact that the DF is absent, such as the example of [-voice]
mentioned above; (iii) unspecified (‘/’) [15], referring to the fact that the
feature can be either positive or negative, e.g. the feature [high] specifying
the tongue position does not have any effect on the production of the phoneme
[m] and so we label it as [/high]; and (iv) irrelevant (‘x’), which expresses
that the DF has no relationship with the phoneme. For example, the feature
[tense] describes a greater degree of constriction with a tongue body or root,
but does not play a part in the articulation of the phoneme /p/ and hence we
assign the value [xtense].

The appendix shows the mapping form phonemes to DFs used in this work.
Since a stop (or plosive) consists of both a closure and a release, the two parts
are mapped to two different DF vectors. Similarly, a diphthong exhibits an
articulatory change and is mapped to two different DF vectors. To maintain
consistency for ease of comparison, monophthongs are represented by two
identical DF vectors, indicating that there is no change in articulation within
the production of the phone.

DFs have articulatory correlates and as a consequence, acoustic correlates as
well [37]. In order to support our investigation of the acoustic manifestations of
DFs in dysarthric speech, we designed and collected the Cantonese dysarthric
speech corpus, which we named CU DYS, as described in the next section.
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Table 1: Brief Definitions of the 21 distinctive features (DFs) used in this work [15].

Group Distinctive Features Brief Meaning

Tongue

Coronal Tongue blade is raised toward the
teeth or the hard palate

High, Low, Front,
Back

Position of the tongue

Lateral How to the tongue manipulates
the airstream flow

Tense Tongue configuration with a
greater constriction

Velar and Alveolar [21] Place of obstruction made by the
tongue

Lips Labial Constriction at the lips

Rounded Protrusion of the lips

Tongue/Lips Anterior Horizontal position of the primary
constriction

Soft Palate Nasal Soft palate is lowered

Vocal cords Spread glottis Vocal cords are drawn apart

Voiced Vocal cords vibrate periodically

Articulator-free

Syllabic Constitution of syllable peaks

Consonantal With a sustained vocal tract con-
striction

Sonorant Vocal tract configuration is open

Continuant Vocal tract configuration allows
the airstream to flow through the
centre of the oral tract

Strident A constriction forces the
airstream to strike two surfaces

Delayed Release [8] Vocal tract closure released with
a delay



Automatic Analyses of Dysarthric Speech 7

3 Corpora

3.1 Chinese University Cantonese Dysarthric Speech Corpus: CU DYS

We have designed and collected CU DYS, a Cantonese dysarthric speech
corpus [45]. We have included three reading tasks: single word-reading (61
words), short sentence-reading (23 sentences), and passage-reading (1 passage
including 4 long sentences). The collection effort is conducted in collaboration
with patient organizations, speech therapists and doctors. Individuals reported
to have spinocerebellar ataxia (SCA) or cerebral palsy (CP) which lead to
dysarthric speech were invited to participate in this study. Altogether 27
dysarthric subjects and 14 healthy subjects have been referred and invited to
join the study by providing speech recordings.

Each stimulus is recorded at least twice, with the first one intended as
practice for the speaker. However, if the second recording has issues with
noise, mispronunciations, missing characters or other errors, then the speaker
is requested to repeat until an acceptable recording is obtained. However, the
passage-reading task was only recorded twice to avoid fatigue in providing
longer speech recordings. Table 2 compares the durations of the speech
recordings between dysarthric and healthy control speakers. It can be seen
that the durations of the dysarthric recordings are around three times that of
the healthy control recordings.

Table 2: The durations of acceptable speech recordings between dysarthric speakers and
healthy control speakers in word-reading and sentence-reading tasks.

Dysarthric speakers Healthy control speakers

65 minutes 23 minutes

3.2 Speech Severity and Manual Phonetic Transcriptions

The passage-reading task is mainly used for assessment of the severity of
the dysarthric condition by speech therapists, because the task elicits more
speech. Two speech therapists were invited to provide assessment based on
a 5-point scale (where 1 has the highest speech intelligibility and 5 has the
lowest speech intelligibility). A subject’s speech severity rating is based on the
overall average of the four utterances across the scores provided by the two
speech therapists.

As regards phonetic transcriptions, we recruited undergraduate students
who are linguistics majors to serve as transcribers. The students are familiar
with the Cantonese Jyutping system, but they do not have prior exposure
to dysarthric speech – we believe this is a suitable setup for transcription
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because it provides the perspective of the perception of the general listener.
Each utterance is transcribed by two transcribers, to allow for some degree of
perceived variability in the transcription (we will elaborate on this later). They
listened with a Sennheiser PC155 headset in a soundproof room and transcribe
the utterances in terms of Jyutping syllables. No other information about the
textual prompts is provided to the transcribers. Also, each transcriber only
transcribes the speech of at most two dysarthric speakers per week, to reduce
any learning effects specific to the dysarthric speakers. The transcribers were
asked to listen to the utterances for as many times as they need and provide a
phonetic transcription for syllable onsets, nuclei and codas [46]. In parallel, we
obtain the canonical phonetic transcriptions by first mapping the text prompts
into the canonical Jyutping syllable transcriptions, which are then mapped
into the Jyutping syllable onsets, nuclei and codas in the canonical phonetic
transcriptions [46]. To compare the manual phonetic transcriptions with the
canonical phonetic transcriptions, we first perform manual alignment between
the two sequences – first mapping the syllable nuclei and then the syllable
onsets and codas.

3.3 Dataset Division

We divided the CU DYS corpus into training, development and testing sets,
covering word-reading and sentence-reading utterances. It was challenging
to recruit dysarthric speakers and our corpus had more male speakers than
female speakers. We strive to include speakers of both genders in each divided
dataset. The corresponding statistics are shown in Table 3.

Table 3: Dataset division in the CU DYS corpus.

Dataset Dysarthric speakers Healthy control speakers

Training

10 males 3 females 5 males, 5 females
1,092 utterances 840 utterances

Severity level (average 2.5,
s.d. 1.2, range 1.4 to 5)

Development

4 males 2 females 1 male, 1 female
504 utterances 168 utterances

Severity level (average 2.6
s.d. 1.2, range 1.1 to 4.5)

Testing

5 males 3 females 1 male, 1 female
672 utterances 168 utterances

Severity level (average 2.8
s.d. 1.5, range 1.4 to 4.9)
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3.4 Non-Cantonese Speech Data

In order to augment the CU DYS dataset for experimentation, we explore
used some additional corpora which have phonemic transcription. Phonemic
transcriptions can provide a more precise DF annotation. Therefore, we
carefully select the CU SENT corpus [22] with Cantonese read speech of 80
healthy speakers, consisting of 21,600 utterances. Furthermore, dysarthric
speech naturally involves deviant pronunciations which may not be found in
the standard Cantonese phone set. For example, the phoneme /p/ is unvoiced
[−voice] in Cantonese. If the deviant pronunciation of /p/ altered the DF to
[+voice] DF, the sound cannot be found in the Cantonese phone set and will
unlikely be found in a Cantonese speech corpus. However, the voiced version of
/p/ is the English phoneme /b/. Hence we also augment our data by including
two English corpora – (i) the TIMIT [13] training set which has 630 speakers
and 6,300 utterances; and (ii) the speech recordings of healthy speakers in
TORGO [36], which has 14 speakers and 11,900 utterances. This is an initial
step we took in “borrowing” data from English speech recordings to support
our experimentation. We believe that in the future, borrowing further across
other languages would also be helpful.

As we are using both Cantonese and English data, we need to use a cross-
language, machine-readable phonetic alphabet, and we have adopted SAMPA
(Wells, 1997). All the Cantonese and English phoneme sets are mapped into
SAMPA, devoting due consideration to articulatory contexts. For example, the
Cantonese phoneme /p/ may occur in a syllable onset of coda position, and
may exhibit different pronunciations. /p/ in the onset position is aspirated
and is hence denoted as /p_h/, but it is unaspirated in the coda position and
is denoted as /p_}/. We have adopted a total of 84 phones for Cantonese and
English and these are listed in the appendix.

4 Analysis of Dysarthric, Deviant Articulations based on Manual
Phonetic Transcriptions

4.1 Articulatory Error Rate (AER)

We use the articulatory error rate (AER) to represent how often a deviation
occur for a specific DF based on the recordings of a dysarthric subject. Recall
from Section 2.3 that the current study is based on the complete list of 21
DFs. Hence, we can compare the canonical phone transcriptions (based on the
Jyutping syllable) with the manual phone transcriptions to locate the deviant
pronunciations, and from those deviations we can map out the differences in
DFs table lookup. Recall from the introductory section above that each DF
can take on values that are basically positive or negative. However, if the
subject misses a phone, then the DFs of the canonical phone will be considered
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to have mapped to the DF value of NULL. Conversely, if the speaker inserts
a phone, then the DFs of the “non-existent canonical phone” will be treated
as NULL values that are then mapped to the feature values of the inserted
phone. Hence, we have three types of DF errors based on how features are
replaced, namely:

• Substitution Error (S): + → - , - → +, + → x, - → x

• Deletion Error (D): + → NULL , - → NULL

• Insertion Error (I): NULL → + , NULL → -

As explained above, for each DF, we can compute the percentage of
deviations occurring for each DF to obtain its AER. For example, if a subject’s
articulation shows that 20% of the [round] feature differs from the canonical
production, then AER for [round] will be 20%. Let i be the index of the DF
across the complete set of 21 features. Hence, each phone uttered by a subject
may be characterized by a vector of DFs, if we examine all the recordings of
a given speaker, we can then compute the articulatory error rate (AER) for
each DF i, defined by Equation 1:

AER(DFi) =
Si +Di + Ii

Ti
(1)

where the numerator is the sum of all the error types, and Ti in the denominator
denotes all the occurrences of the values of DF i = 1, 2 . . . 21

Recall that each utterance is transcribed by two individuals. Our calcu-
lations can accommodate cases where there may be different transcriptions.
We consider the utterance to be spoken twice when calculating AERs. For
example, assuming that there is a segment for which a DF is positive. Then,
if one transcriber listens and considers that a given DF is positive for that
segment, but the other transcription regards that the DF is negative, the AER
of the specific DF will be 0.5.

4.2 Analyses

As explained above, with canonical phones and manually transcribed phones,
we calculate the AERs for each DF and for all dysarthric subjects in CU DYS.
Results are shown in Table 4.

For the word-reading task, AERs range from 8.2% to 20.8% with a mean
of 13.7%. DFs with the highest error rates are related to consonants, namely
[anterior] (AER: 20.8%), [coronal] (AER: 20.0%), [alveolar] (AER:
19.8%) and [velar] (AER: 19.0%). DFs with the lowest error rates are
[syllabic] (AER: 8.2%), [delayed release] (AER: 8.6%), and [lateral]
(AER: 9.4%). It is noted that [syllabic] distinguishes between vowels and
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Table 4: Average AERs (%) across all dysarthric subjects in word-reading task, and sentence-
reading task based on manual transcriptions. The bold value is the highest value and the
underline value is the lowest value in a column respectively.

Word-reading Sentence-reading

Standard Standard
DF Mean Deviation Mean Deviation

syllabic 8.2 9.4 7.3 9.7
consonantal 10.6 12.3 9.3 12.0
sonorant 11.6 13.3 10.1 12.8
coronal 20.0 19.7 16.3 19.7
anterior 20.8 20.4 17.7 20.0
labial 14.7 15.6 11.4 15.0
high 15.3 13.1 12.9 11.9
back 14.4 12.3 12.0 11.5
front 13.8 11.8 11.6 10.6
low 14.7 12.6 11.9 11.1
rounded 12.9 14.5 10.2 13.4
continuant 12.0 13.8 10.6 13.7
lateral 9.4 10.2 8.6 10.3
nasal 11.3 12.6 9.7 11.8
tense 12.3 10 9.7 9.3
strident 10.6 12.3 9.6 12.6
spread glottis 11.9 13.6 9.5 12.1
voiced 16.0 18.3 14.6 18.3
delayed release 8.6 11.5 8.3 12.0
velar 19.0 17.7 16.5 18.2
alveolar 19.8 19.4 16.6 19.7

Average 13.7 14 11.6 13.6

consonants and the clear distinction brings a low AER. For [delayed release],
the DF is positive only for /c/ and /z/. For [lateral], the DF is positive
only for /l/. Hence [delayed release] and [lateral] is mostly negative and
this may also lead to fewer errors. The sample standard deviation of the DF
error rates ranges from [syllabic] (SD: 9.4%) to [anterior] (SD: 20.4%).

We also conducted analysis between AERs of DFs against the severity of
the condition. Results are shown in Figure 1. We observe that there is high
correlation between AERs and severity levels across the 21 DFs, with the
average at 0.90 in the word-reading task.

For the sentence-reading task, AERs range from 7.7% to 17.7% with a
mean of 11.6%. The values are generally lower in sentence-reading than in the
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Figure 1: The correlations between AERs and severity levels for all dysarthric subjects in
CU DYS based on the manual transcriptions. For each DF, the AERs are compared with
severity levels across all subjects.

word-reading task. The error patterns are consistent, i.e., DFs with the highest
error rates are also [anterior] (AER:17.7%), [coronal] (AER:16.3%), and
[alveolar] (AER:16.6%). Also, the DFs with the lowest error rates are
[syllabic] (AER:7.3%), [delayed release] (AER:8.3%), and [lateral]
(AER: 8.6%). The lowest standard deviation is also [syllabic] (AER:7.3%),
and the highest is also [anterior] (AER:17.7%). The sample standard
deviation of the DF error rates ranges from [tense] (SD: 9.3%) to [anterior]
(SD: 20%). Similar to the results of the word-reading task, we observe that
the AERs of the sentence reading task are highliy correlated with the severity
levels, averaging at 0.86 over all the 21 DFs (please see Figure 1).

5 Acquiring Deviant Articulations based on Automatic
Transcriptions

The use of manual phonetic transcriptions to obtain articulatory errors (AERs)
is time-consuming and difficult to apply at scale. In this section, we present our
study in the development of DF detectors based on automatically transcribed
phones using a phone recognizer.

5.1 Sequence-to-sequence (Seq2Seq) Model Trained on Healthy
Speech Data

Manual phonetic transcription can be considered a sequence of phonetic labels
corresponding to a sequence of speech signal. The two sequences often have
different sequence lengths, hence, step-wise mapping between sequences is
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inapplicable. We utilize the sequence-to-sequence (Seq2Seq) model to map the
sequence of acoustic frames extracted from the speech signal to the sequence
of phonetic labels. In order to model the temporal dynamics, the recurrent
neural networks (RNNs) [35] are used to construct the encoder of the seq2seq
model. The gated recurrent unit (GRU)-based RNN is adopted [7]. Upon
the RNN-based encoder, the connectionist temporal classification (CTC) [14]
loss function is used to tackle the alignment between the input and output
sequences, as shown in Figure 2. More specifically, we use an 80-dimensional
filterbank feature with first- and second-order derivatives as input features to
the encoder. The filterbank features are extracted using a 25 ms window with
a window shift of 10ms. 23 consecutive frames (the 11 previous frames, the
current and the next 11 frames) are used and downsampled to a 30ms frame
rate [6]. Batch normalization is applied to the input features. Three fully-
connected layers of 1024 units with rectified linear activations are used. Batch
normalization is applied again before the fully-connected layer outputs are fed
to the bidirectional GRU layer with 1024 cells, followed by one fully-connected
layer with 1024 units. The output layer is a softmax layer that predicts 87
classes (84 phones + 1 silence + 1 utterance boundary + 1 blank label).

Figure 2: The DNN architecture.

The phone labels include both Cantonese and English phones because we
found that using both language corpora can improve the ASR performance as
discussed in the next paragraph. The blank label is used by the CTC loss to
enable alignment between input and output sequences [14].
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The training set consists of the CUSENT corpus (20.4 hours) [22] and
the healthy speech part of the TORGO corpus (21 hours) [36], the TIMIT
corpus (4.2 hours) [13], and the training set (including both the word-reading
task and the sentence-reading task) of healthy speech in the CU DYS corpus
(Section 3.3). We adopt an early stopping strategy [31] which terminates the
training process when there is no further improvement of phone error rate
(PER) on the CU DYS healthy speech development set within last N epochs
(N = 20). Stochastic gradient descent is used as the optimizer [34]. The PER
evaluated on the healthy speech of CU DYS testing set is 7.6%. If we only
use the Cantonese corpora (i.e., CUSENT and CU DYS) without the extra
English corpora in training, the PER is increased to 10.8%.

5.2 Phonetic Decoding of Dysarthric Speech

The trained seq2seq model is used to perform phonetic decoding of dysarthric
speech. For a correctly pronounced phone, the probability outputs show
a sharp distribution, as illustrated in the left plot in Figure 3, where the
segment has the same label of /aa/ for both the canonical phone and the
manually transcribed phone. In automatic phone transcription, the label
/aa/ receives the highest probability (0.98), in stark contrast with the second

Figure 3: Left side: The output probabilities generated by the trained seq2seq model shows
a sharp distribution for a correctly pronounced phone in the CU DYS corpus (left), where
/aa/ is selected for the canonical phonetic transcription and the two manual transcriptions.
{blank} refers to the case where no label is given for the acoustic frame. Right side: The
output probabilities show much more uncertainty for a deviant, dysarthric production in CU
DYS. The canonical phonetic label is /s/, which is different from the two manual phonetic
transcriptions (/b/and /d/ respectively), and the phone with the highest probability is
/kw/.
Note: https://www.overleaf.com/project/6355fbe1789aa541bca926f7.

https://www.overleaf.com/project/6355fbe1789aa541bca926f7
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highest probability (0.02) for the blank label. However, for the case of a
deviant production in dysarthric speech, as illustrated in the right plot of
Figure 3, there is much more uncertainty – the label /kw/ receives the highest
probability (0.69), and the label /d/ receives the second highest probability
(0.25). For this particular segment, the canonical label is /s/ and there is
disagreement between the two manually transcribed labels (namely, /b/ and
/d/). We also noted that for dysarthric productions, the manually transcribed
label(s) often appear(s) among the top labels with highest probability. Based
on this observation, we further align two sequences of phonetic labels (i.e. the
canonical phonetic labels, and the one from seq2seq model) in the next section.

5.3 Phonetic Alignment for Computing AERs

The recognized phonetic labels output by the seq2seq model need to align
with the canonical phonetic labels for calculation of the AERs. Since non-
Cantonese corpora (i.e. English corpora) are used in model training, it is
possible that the recognizer may output a non-Cantonese phone label for
a frame because it received the highest probability. However, the manual
transcriptions (treated as the ground truth) do not include any non-Cantonese
phones. Hence, in preparation for the alignment, we need to identify each
recognized non-Cantonese phone label and map it to the “back-off” Cantonese
phone label, which has the least number of differing DF values. This mapping
process leads us to assign the probability of the “back-off” phone to be the
sum of the probability of the non-Cantonese phone label and the probability
of the replacement (back-off) Cantonese phone label. Specifically, let α denote
the non-Cantonese phone label with the highest probability for a frame; and β
denote Cantonese phone label closest to α in terms of DFs; and let p[ϕ] denote
the probability of the phone ϕ. Then, the mapping due to the “back-off” phone
β will lead us to updated probability p′(β) for the recognized phone label:

p′(β) = p(α) + p(β). (2)

Another point to note is that consecutive acoustic frames may often be
repeated as they belong to the same phone segment. For these repeating phone
labels in successive frames, we assign the {blank} label. For example, given
three consecutive acoustic frames that belong to the same phone segment /w/,
if the recognition outputs are the phone labels /w/-/w/-/w/, the procedure will
relabel the repeated /w/ so that the sequence becomes /w/-{blank}-{blank}.

As a consequence of the above procedures, we have two sequences of
phonetic labels that will be aligned using dynamic programming [1]. The
two sequences are: (i) the sequence of canonical phones c1, c2, . . . , cj , . . . , cM ;
where M is the length of the sequence of canonical phones in the utterance; and
(ii) the sequence of frame f1, f2, . . . , fk, . . . fN ; where N is the total number
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of frames. The similarity between a pair of aligned phones cj and γk ∈ Γ in
the frame fk, may be the proportion of their common DFs values, but we may
also consider a more refined “similarity” based on the frequencies of errors
observed in the CU DYS training set. For example, in the case of a canonical
phone bigram /a n/, we observe that the substitution of /n/ with /ng/ is much
more common than with the phone /m/ (even though all are nasal phones).
We believe that is important to capture such phenomenon in the similarity
metric, and hence it is useful to consider the frequency of substitution errors
as a reflection of similarity. For a given canonical phone pair (cj−1, cj) , if
cj is substituted with γk very frequently, then it suggests that they are more
similar in the given context and are thus harder to discern clearly. Therefore,
we propose a similarity term based on the relative frequencies of corresponding
substitutions found in the training set, which is used as a correction factor
for the probability of the recognized phoneme label γk – and this is used as
the weighting factor for the DF similarity during the alignment by dynamic
programming (please see Equation 3).

Weighting factor = p(γk)
Count(cj → γk|cj−1, cj)

Count(cj−1, cj)
. (3)

The DF similarity between cj and γk is the proportion of DF with common
values between their DF vectors. If there is an insertion or deletion, then the
DF distance is 42 (i.e., 21 DFs for each of 2 vectors as mentioned in Section
2.2). If recognition produces a blank output, the DF distance is arbitrarily set
to (21 DFs * 1.5), to be lower than the cost of insertion/deletion.

6 Comparing Articulatory Analyses based on Manual and
Automatic Transcriptions

Thus far, we have described our framework for articuatory analyses of dysarthric
speech through the use of DFs, whose values are obtained from the comparison
between the canonical phonetic transcription of text prompts and the manual
phonetic transcription of the spoken utterances. This section aims to examine
the feasibility of replacing manual phonetic transcription with automatic
phonetic transcription.

6.1 Phone Error Rates from Recognition

When comparing manually transcribed phones and automatically transcribed
(i.e. recognized) phones, the PER is calculated as:

PER =
Sp +Dp + Ip

Tp
(4)
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where Sp, Dp, Ip, and Tp, are the counts of substitutions, deletions, insertions,
and total number of phones respectively.

We consider a phone error to have occurred if the recognized phone is
different from the two manually transcribed phones for the same speech segment.
PERs of the word-reading task is 33.0%, and the sentence-reading task is
35.6%. The performance is similar to other low-resource phone recognition
systems [23].

6.2 DF Error Rates from PER

Since automatic phone transcription will inevitably have recognition errors,
these areas will translate into DF errors during articulatory analyses. As
mentioned earlier, there are 21 DFs in total and each phone is mapped to
two DF vectors to capture possible dynamics. Therefore, in comparing an
automatically transcribed phone with a manually transcribed phone, the
maximum distance between their DF vectors is 42.

Analysis shows that misrecognized phones tend to be close counterparts of
the canonical phone and hence their DF vectors tend to have more values in
common. For example, confusable vowels like /a/ and /aa/ differ only in the
DF [tense]; confusable nasals /m/ and /n/ differ in the 3 DFs [coronal],
[labial] and [alveolar].

The range of DF error rates (as a consequence of phonetic misrecognition)
for word-reading tasks range from a minimum of 12.1% for [lateral] to 17.7%
for [high], with an average DF error rate of 14.6%. For sentence-reading tasks,
the DF error rates range from a minimum of 13.7% for [spread glottis] to
19.7% for [high], with an average of 16.4%. Details are shown in Table 5(a).

6.3 Root Mean Squared Errors (RMSE) of AER

Recall from Section 4.1 that we can derive the DF vectors from the manually
transcribed phones of a subject’s read speech, and compare then with the DF
vectors derived from the canonical phones of the textual prompts for reading.
This comparison is used to compute the AER (articulatory error rate) for
each DF, to characterize the deviant articulations in the subject’s recordings.
Since manual phonetic transcription is laborious, it will be more efficient if
we can use automatically transcribed phones in place of manually transcribed
phones. Therefore, it will be useful to examine the AERs obtained for the full
set of DFs based on manual phonetic transcriptions and compare them with
the automatic transcriptions. This comparison is done for each DF, and for
each subject we obtain the squared error, then we compute the mean squared
error across all testing subjects, and finally the square root to obtain the
RMSE (root mean squared error). Results are shown in Table 5(b). In the
word-reading task, RMSE values range from 0.029 (for the DF [lateral]) to
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Table 5: (a) DF error rates computed across all testing subjects; (b) RMSE of AERs between
the DFs obtained from manual versus automatic phone transcriptions, computed across all
testing subjects; (c) Correlation of AERs between the DFS obtained from manual versus
automatic phone transcriptions, computed across all testing subjects.

DF error rate(%) RMSE of AERs Correlation of AERs
(a) (b) (c)

DF Word Sentence Word Sentence Word Sentence

syllabic 13.3 14.2 0.046 0.065 0.98 0.97
consonantal 12.5 14.2 0.030 0.054 0.98 0.96
sonorant 13.7 16.8 0.033 0.073 0.99 0.96
coronal 14.8 16.1 0.053 0.010 0.99 0.93
anterior 14.8 16.6 0.061 0.083 0.98 0.97
labial 16.3 18.4 0.036 0.076 0.99 0.94
high 17.7 19.7 0.058 0.071 0.97 0.95
back 17.1 18.5 0.055 0.077 0.97 0.95
front 16.5 18.6 0.046 0.064 0.97 0.95
low 17.0 18.7 0.043 0.085 0.97 0.92
rounded 15.2 16.5 0.041 0.059 0.98 0.95
continuant 14.0 15.3 0.037 0.061 0.99 0.96
lateral 12.1 13.7 0.029 0.046 0.98 0.98
nasal 13.9 16.9 0.037 0.071 0.99 0.94
tense 16.8 19.2 0.072 0.080 0.88 0.92
strident 13.2 13.9 0.034 0.052 0.99 0.96
spread glottis 12.9 13.7 0.032 0.050 0.99 0.97
voiced 13.8 16.8 0.063 0.013 0.99 0.97
delayed release 12.7 14.1 0.205 0.300 0.90 0.92
velar 14.6 15.8 0.053 0.086 0.99 0.96
alveolar 14.2 15.9 0.052 0.100 0.99 0.94

Average 14.6 16.4 0.053 0.085 0.97 0.95

0.205 (for the DF [delayed release]) with a mean of 0.053. For the sentence
reading task, the range of RMSE is from 0.046 (for [lateral]) to 0.300 (for
[delayed release]) with a mean of 0.085. These are new results in the
current using the seq2seq model for phone recognition first, before mapping
the phones to the DF representations. Our previous approach (reported in
[46]) used multi-layered perceptrons (MLP) for direct DF recognition, and
reported only results on correlation but not RMSE. The current work compares
both approaches using RMSE and obtains superior improvements (from 26.7%
to 51.5%) in reduction of RMSE. From Table 5, We observe that [delayed
release] presents an outlier. The reason is that this DF is only applicable
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to /c/ (e.g. /ce/ “車” <translation: car>) or /z/, with the DF values in
“+” . When the canonical phone is /c/ and the manual transcribed phone is
also /c/, then it is no error of [delayed release]. However, the recognizer
misrecognized the phone as /s/, /j/, or /h/, which [delayed release] is “x” ,
so there all become articulatory errors.

In addition to computing RMSE, we also wish to compute the correlation,
for each DF, between the AERs obtained from manual versus automatic pho-
netic transcription across all testing speakers. Results are shown in Table 5(c).
For the word-reading task, the mean correlation is 0.97. For the sentence-
reading task, the mean correlation is 0.95. As an illustration, we can visualize
in Figure 4 the AERs of the feature [rounded] across subjects, where the
mean correlation is at 0.98. These results based on DFs obtained from seq2seq
phone recognition are also significantly improved, when compared with our
previous approach based on direct DF recognition using MLP [46], which
obtained 0.90 and 0.91 for word- and sentence-reading tasks.

Figure 4: The AERs of the DF [rounded] across dysarthric subjects in the word-reading
task, comparing AERs derived from automatic phonetic transcription with those from
manual phonetic transcriptions.

Overall, with the lower RMSE and high correlation values, we establish
that the use of automatic phonetic transcriptions for DF-based analysis is a
viable alternative to the use of manual phonetic transcriptions.

7 Applications in Analysis of Dysarthric Speech

This section discusses potential applications of DF-based AERs for the analyses
of dysarthric speech. In this section, the AERs are derived from automatic
phonetic transcriptions.
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7.1 Comparing Healthy and Dysarthric Speech using AERs

Average AERs for each DF, computed from the recordings of healthy and
dysarthric subjects in the CU DYS test set are shown in Figure 5 (for word-
reading task) and Figure 6 (for sentence-reading task). Healthy subjects
have lower AERs in all 21 DFs, compared with dysarthric subjects. In the
word-reading task, the range of AERs from healthy subjects is from 0.8% (for

Figure 5: Comparison between healthy and dysarthric speech from the word-reading task of
the CU DYS test set, in terms of AERs across DFs.

Figure 6: Comparison between healthy and dysarthric speech from the sentence-reading
task of test set of CU DYS in terms of the AERs across DFs.
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[delayed release]) to 4.7% (for [coronal]), compared with corresponding
figures in the range for dysarthric subjects, i.e., from 15.0% (for [lateral]) to
27.9% (for [anterior]) in the word-reading task. A similar trend is observed
for the sentence-reading task – ranging from 0.7% (for [low]) to 3.1% (for
[labial]) from healthy subjects, 14.0% in [low] to 34.1% in [delayed release]
from dysarthric subjects.

The patterns of AERs across the two tasks are also similar. DFs with the
AERs higher than 25% include [coronal], [anterior], [voiced], [velar],
and [alveolar]; while the corresponding AERs in healthy speech are lower
than 5%. All [coronal], [velar], and [alveolar] are related to articulation
with the tongue in consonants. This finding is consistent with Whitehill and
Ciocca [43], which also indicates that consonants have lower accuracies than
vowels.

7.2 AER Profile of Individual Dysarthric Subject

Figure 7 illustrates the AER profiles of two dysarthric subjects (S015M, male
with cerebral palsy; and S027F, female with spinocerebellar ataxia) based on
the word-reading task. The average AER of S015M is 35.5%. He has difficulties
pronouncing consonants like [coronal] (49.3%), [anterior] (50.0%), [velar]
(49.0%), and [alveolar] (49.7%). The average AER of the other dysarthric
subject, S027F, is 8.7%. S027F has difficulties in pronouncing vowels such as
[high] (12.9%), [tense] (14.6%). Distinct AER profiles may inform the design
of more personalized articulation practice.

Figure 7: The AER profiles of dysarthric subjects: S015M, and S027F.
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7.3 Relationship between AERs and Speech Severity Levels

Figure 8 shows the correlations between the automatically derived AERs and
speech severity levels based on the test set for both tasks. All the correlations
are higher than 0.9 – with an average of 0.95 (standard deviation 0.02) in the
word-reading task, and 0.96 (standard deviation 0.02) in the sentence-reading
task. Among the DFs, [tense] has the highest correlations for both tasks,
which may potentially offer some indication of severity.

Figure 8: The correlations between AERs and severity levels across the dysarthric subjects
in the test set.

Next, we explored the possibility of estimating the speech severity level
based on AERs based on the data from a subject. We applied Random
Model Trees [30] for regression, implemented with Weka [11]. Modeling is
based on the training and development data sets of CU DYS. Estimation of
severity level based on AER is conducted on the test set. An illustration is
provided in Figure 9 based on the word-reading task. The correlation between
estimated severity levels and clinician-assessed severity levels is 0.998 (with
RMSE 0.085) for the word-reading task; and 0.921 (with RMSE 0.598) for the
sentence-reading task.

8 Conclusions and Future Work

This paper presents our approach in the use of distinctive features (DFs) as
descriptors of articulation as a representation of dysarthric speech (i.e., a type
of disordered speech) that can reflect its deviations from normal speech. The
main contribution of this study is unlocking the potential research area of
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Figure 9: The estimated speech severity levels using AERs from the word-reading task,
in comparison with the manually labeled severity levels. 1 is the lowest severity (i.e. the
highest speech intelligibility), and 5 is the most severe.

articulatory analyses in dysarthria through the use of a distinctive feature
(DF) representation. The paper demonstrates various articulatory analyses,
including the identification of potential articulatory problems, profiling personal
articulatory problems, and using the articulatory problems to estimate severity.

The study is conducted using our home-grown speech corpus known as
CU DYS. We need to overcome the challenge of recruiting dysarthric speak-
ers who are willing and capable of attending speech recording sessions. The
linguistically-motivated DF representation is mapped from the phonetic rep-
resentation obtained through manual transcription, to obtain a DF vector
representation for each phone. Human perceptual variability between the two
transcribers is accommodated through treating the two transcriptions as two
phone occurrences. To alleviate the costly process of manual transcription, we
have also developed a seq2seq model for automatic phonetic recongition. Any
phonetic transcription errors from automatic recognition will lead to DF errors.
While the PER (phone error rates) are at 33.0% and 35.6% respectively for
the word-reading and sentence-reading tasks, the average DF error rates are
at 14.6% and 16.4% respectively.

Next, we used the DF representation obtained from automatic phonetic
transcriptions and compare them with those obtained from the canonical
phonetic labels mapped from the text prompts. This comparison leads to the
AERs (articulatory error rates) and we found that the RMSE is low at 0.053
with a high correlation at 0.97 for the word-reading task, and the corresponding
values for the sentence reading task are 0.085 (RMSE) and 0.95 (correlation).
These low RMSE and high positive correlations demonstrate the feasibility of
automatic DF-based analyses for identifying articulatory problems in dysarthric
speech. Automatic Speech Recognition (ASR) technologies have been proposed
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for speech analyses, e.g., in Xiong et al. [48], and phone posteriors are often
used to support severity analysis [25]. In this work, we present the use of AER
(articulatory error rates) derived from the automatic phone transcriptions, to
elucidate the articulatory difficulties shown in the dysarthric speech signal
from individual subjects. The AER profile of a subject may potentially help
inform the design of intervention plans.

Future work will be devoted to further improvement of phone recognition
performance to lower DF error rates and AER. We note that previous efforts in
neurological research and clinical practice have been dedicated to categorizing
speech characteristics and underlying neuro-pathophysiology of dysarthria [10]
because the type of dysarthria can provide a clue to identify the causal disorder
and suitable treatment plans [28, 49]. It has also been shown that phonological
features can reveal some dysarthria types [4]. We believe that it will be useful
to investigate the use of the AER profiles to inform categorization of dysarthric
type, as well as the design of personalized intervention plans for dysarthric
subjects.
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